Midterm 2 - Review - Problems

Peyam Ryan Tabrizian

Tuesday, November 12th, 2013

1 Derivatives

Problem 1

Find the slope of the tangent line to following the curve at $(2,1)$:

$$
\tan ^{-1}\left(\frac{2}{x}\right)=\sin ^{-1}\left(\sqrt{\frac{y}{2}}\right)
$$

Problem 2

If $F(x)=f(3 f(4 f(x)))$, where $f(0)=0, f^{\prime}(0)=2$, find $F^{\prime}(0)$

2 Antiderivatives

Problem 3

A particle moves with an acceleration $a(t)=6 t \mathrm{ft} / \mathrm{s}^{2}$. Its velocity at time $t=0$ is $2 \mathrm{ft} / \mathrm{s}$. What is the net change of position of the particle between times $t=1$ and $t=2$?

3 Exponential growth and decay

Problem 4

The half-life of cesium-137 is 30 years. Suppose we have a $100-\mathrm{mg}$ sample. After how many years will only 1 mg remain?

4 Linear approximation

Problem 5

Use linear approximations (or differentials) to approximate $(2.013)^{3}$.

5 L'Hopital's rule

Problem 6

Evaluate the following limits
(a) $\lim _{x \rightarrow 0^{+}} \sin (x) \ln (x)$
(b) $\lim _{x \rightarrow 0^{+}}(\sin (x))^{x}$

6 Mean Value Theorem

Problem 7

Show that $x^{5}-6 x=c$ has at most one solution in $[-1,1]$

Problem 8

Is there a function f with $f(0)=-1, f(2)=4$ and $f^{\prime}(x) \leq 2$ for all x ?

7 Related rates

Problem 9

A cylindrical gob of goo is undergoing a transformation in which its height is decreasing by 1 cm per second, while its volume is decreasing by $2 \pi \mathrm{~cm}^{3}$ per second. If its volume at a certain instant is $24 \pi \mathrm{~cm}^{3}$ and its height is 6 cm , determine if its radius is increasing or decreasing at that instant, and at what rate.

8 Optimization

Problem 10

A woman is on the upper-left corner A of a rectangular lake that is 3 km wide and 8 km long, and her goal is to reach a point B on the lower-right corner in the shortest possible time. Suppose she can row southeast at a speed of 6 km / h to reach a point D on the right-hand-side of the lake, and then run down directly to B at a speed of $8 \mathrm{~km} / \mathrm{h}$. How should she proceed?

9 Graphing

Problem 11

Graph $y=\frac{\sin (x)}{1+\cos (x)}$

